Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 600
1.
J Agric Food Chem ; 72(13): 7043-7054, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38509000

14-3-3ζ protein, the key target in the regulation and control of integrin ß3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin ß3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 µM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin ß3 interaction. Besides, 4-O-MB affected the integrin ß3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.


Platelet Aggregation , Thrombosis , Mice , Animals , Integrin beta3/genetics , Integrin beta3/chemistry , Integrin beta3/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology , Molecular Docking Simulation , Thrombosis/drug therapy , Thrombosis/genetics , Thrombosis/metabolism , Collagen/metabolism , Blood Platelets/metabolism
2.
J Cell Biochem ; 124(7): 989-1001, 2023 07.
Article En | MEDLINE | ID: mdl-37210732

Mutations in the αIIb ß-propeller domain have long been known to disrupt heterodimerization and intracellular trafficking of αIIbß3 complexes leading to diminished surface expression and/or function, resulting in Glanzmann thrombasthenia. Our previous study on three ß-propeller mutations, namely G128S, S287L, and G357S, showed variable defects in protein transport correlated with the patient's clinical phenotypes. Pulse-chase experiments revealed differences in αIIbß3 complex maturation among the three mutations. Hence, the current study aims to correlate conformational changes caused by each one of them. Evolutionary conservation analysis, stability analysis, and molecular dynamics simulations of the three mutant structures were carried out. Stability analysis revealed that, while G128S and G357S mutations destabilized the ß-propeller structure, S287L retained the stability. Wild-type and mutant ß-propeller structures, when subjected to molecular dynamics simulations, confirmed that G128S and G357S were both destabilizing in nature when compared with the wild-type and S287L based on several parameters studied, like RMSD, RMSF, Rg, FEL, PCA, secondary structure, and hydrogen bonds. In our previous study, we demonstrated that mutant S287L αIIbß3 complexes were more stable than the wild-type αIIbß3 complexes, as evidenced in pulse-chase experiments. These findings corroborate variable intracellular fates of mutant αIIbß3 complexes as a result of these ß-propeller mutations.


Integrin alpha2 , Integrin beta3 , Platelet Glycoprotein GPIIb-IIIa Complex , Thrombasthenia , Humans , Integrin beta3/genetics , Molecular Dynamics Simulation , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Structure, Secondary , Thrombasthenia/genetics , Thrombasthenia/metabolism , Integrin alpha2/genetics , Integrin alpha2/metabolism
3.
Blood Adv ; 7(13): 3180-3191, 2023 07 11.
Article En | MEDLINE | ID: mdl-36884296

This report identifies a novel variant form of the inherited bleeding disorder Glanzmann thrombasthenia, exhibiting only mild bleeding in a physically active individual. The platelets cannot aggregate ex vivo with physiologic agonists of activation, although microfluidic analysis with whole blood displays moderate ex vivo platelet adhesion and aggregation consistent with mild bleeding. Immunocytometry shows reduced expression of αIIbß3 on quiescent platelets that spontaneously bind/store fibrinogen, and activation-dependent antibodies (ligand-induced binding site-319.4 and PAC-1) report ß3 extension suggesting an intrinsic activation phenotype. Genetic analysis reveals a single F153Sß3 substitution within the ßI-domain from a heterozygous T556C nucleotide substitution of ITGB3 exon 4 in conjunction with a previously reported IVS5(+1)G>A splice site mutation with undetectable platelet messenger RNA accounting for hemizygous expression of S153ß3. F153 is completely conserved among ß3 of several species and all human ß-integrin subunits suggesting that it may play a vital role in integrin structure/function. Mutagenesis of αIIb-F153Sß3 also displays reduced levels of a constitutively activated αIIb-S153ß3 on HEK293T cells. The overall structural analysis suggests that a bulky aromatic, nonpolar amino acid (F,W)153ß3 is critical for maintaining the resting conformation of α2- and α1-helices of the ßI-domain because small amino acid substitutions (S,A) facilitate an unhindered inward movement of the α2- and α1-helices of the ßI-domain toward the constitutively active αIIbß3 conformation, while a bulky aromatic, polar amino acid (Y) hinders such movements and restrains αIIbß3 activation. The data collectively demonstrate that disruption of F153ß3 can significantly alter normal integrin/platelet function, although reduced expression of αIIb-S153ß3 may be compensated by a hyperactive conformation that promotes viable hemostasis.


Platelet Glycoprotein GPIIb-IIIa Complex , Thrombasthenia , Humans , Amino Acids/genetics , HEK293 Cells , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombasthenia/genetics , Thrombasthenia/metabolism
4.
Cells ; 12(2)2023 01 04.
Article En | MEDLINE | ID: mdl-36672149

Glanzmann thrombasthenia (GT) is a rare autosomal recessive inherited platelet disorder occurring frequently in populations with high incidence of consanguineous marriages. GT is characterized by quantitative and/or qualitative defect of the platelet αIIbß3 (GPIIb/IIIa) receptor caused by pathogenic variants of the encoding genes: ITGA2B and ITGB3. Patients present with a moderate to severe bleeding tendency with normal platelet count. Platelets show reduced/absent aggregation for all agonists except ristocetin in light transmission aggregometry and reduced/absent αIIbß3 expression in flow cytometry (FC). In this study, we investigated a cohort of 20 Pakistani patients and 2 families collected from the National Institute of Blood Disease, Karachi and Chughtai's Lab, Lahore. Platelet aggregation studies, FC (platelet CD41, CD61, CD42a, CD42b) and direct sequencing of the candidate genes were performed. All patients showed altered platelet aggregation, but normal agglutination after stimulation with ristocetin. Absent/reduced αIIbß3 receptor expression was present in the platelets of 16 patients, in 4 patients expression was borderline/normal. Candidate gene sequencing identified pathogenic/likely pathogenic variants in 15 patients. Seven variants are novel. One patient with absent receptor expression remained without genetic finding. 13 (86.7%) of 15 patients stated consanguinity reflected by homozygosity finding in 14 (93.3%) patients.


Thrombasthenia , Humans , Thrombasthenia/genetics , Receptors, Fibrinogen , Ristocetin , Pakistan , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
5.
J Am Soc Nephrol ; 33(10): 1841-1856, 2022 10.
Article En | MEDLINE | ID: mdl-36038265

BACKGROUND: Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS: To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb ß 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS: Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb ß 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb ß 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the ß 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb ß 3 activity in vitro. CONCLUSIONS: Carbamylation of α IIb ß 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb ß 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.


Platelet Glycoprotein GPIIb-IIIa Complex , Uremia , Humans , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Carbamylation , Tandem Mass Spectrometry , Blood Platelets , Uremia/complications , Uremia/metabolism , Fibrinogen/chemistry , Fibrinogen/metabolism , Amino Acids
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(2): 559-564, 2022 Apr.
Article Zh | MEDLINE | ID: mdl-35395997

OBJECTIVE: To construct a mouse model of Glanzmann's thrombasthenia (GT) with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation by CRISPR/Cas9 technology, and then further explore the expression and function of glycoprotein αIIbß3 on the surface of platelet membrane. METHODS: The donor oligonucleotide and gRNA vector were designed and synthesized according to the ITGA2B gene sequence. The gRNA and Cas9 mRNA were injected into fertilized eggs with donor oligonucleotide and then sent back to the oviduct of surrogate mouse. Positive F0 mice were confirmed by PCR genotyping and sequence analysis after birth. The F1 generation of heterozygous GT mice were obtained by PCR and sequencing from F0 bred with WT mice, and then homozygous GT mice and WT mice were obtained by mating with each other. The phenotype of the model was then further verified by detecting tail hemorrhage time, saphenous vein bleeding time, platelet aggregation, expression and function of αIIbß3 on the surface of platelet. RESULTS: The bleeding time of GT mice was significantly longer than that of WT mice (P<0.01). Induced by collagen, thrombin, and adenosine diphosphate (ADP), platelet aggregation in GT mice was significantly inhibited (P<0.01, P<0.01, P<0.05). Flow cytometry analysis showed that the expression of αIIbß3 on the platelet surface of GT mice decreased significantly compared with WT mice (P<0.01), and binding amounts of activated platelets to fibrinogen were significantly reduced after thrombin stimulation (P<0.01). The spreading area of platelet on fibrinogen in GT mice was significantly smaller than that in WT mice (P<0.05). CONCLUSION: A GT mouse model with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation has been established successfully by CRISPR/Cas9 technology. The aggregation function of platelet in this model is defective, which is consistent with GT performance.


Codon, Nonsense , Integrin alpha2 , Thrombasthenia , Animals , CRISPR-Cas Systems , Disease Models, Animal , Fibrinogen/genetics , Humans , Integrin alpha2/genetics , Mice , Oligonucleotides , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , RNA, Guide, Kinetoplastida , Thrombasthenia/diagnosis , Thrombasthenia/genetics , Thrombin/genetics
7.
Hematol Oncol Stem Cell Ther ; 15(1): 21-26, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-33600779

Glanzmann's thrombasthenia (GT) is an autosomal recessive congenital bleeding disorder of platelet aggregation. Mutations in ITGA2B and ITGB3 genes result in quantitative and/or qualitative abnormalities of the glycoprotein receptor complex IIb/IIIa (integrin αIIbß3), which in turn impairs platelet aggregation and lead to GT. In this study, whole genome single nucleotide polymorphism (SNP) genotyping as well as whole exome sequencing was performed in a large family segregating GT. Analysis of the genotypes localized the disease region to chromosome 17q21.2-q21.3. Filtration of whole exome data and candidate variants prioritization identified a pathogenic variant in the ITGB3 gene. The single nucleotide deletion variant (c.2113delC) in exon 13 of the ITGB3 gene is predicted to cause a frameshift and absence of vital C-terminal domains including the transmembrane helix and the cytoplasmic domain. Clinical variability of the bleeding phenotype in affected individuals with the same mutation suggests that other genetic and nongenetic factors are responsible for determining GT features.


Integrin beta3 , Thrombasthenia , Humans , Exons , Frameshift Mutation , Integrin beta3/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Saudi Arabia , Thrombasthenia/genetics
8.
Article Zh | WPRIM | ID: wpr-928754

OBJECTIVE@#To construct a mouse model of Glanzmann's thrombasthenia (GT) with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation by CRISPR/Cas9 technology, and then further explore the expression and function of glycoprotein αIIbβ3 on the surface of platelet membrane.@*METHODS@#The donor oligonucleotide and gRNA vector were designed and synthesized according to the ITGA2B gene sequence. The gRNA and Cas9 mRNA were injected into fertilized eggs with donor oligonucleotide and then sent back to the oviduct of surrogate mouse. Positive F0 mice were confirmed by PCR genotyping and sequence analysis after birth. The F1 generation of heterozygous GT mice were obtained by PCR and sequencing from F0 bred with WT mice, and then homozygous GT mice and WT mice were obtained by mating with each other. The phenotype of the model was then further verified by detecting tail hemorrhage time, saphenous vein bleeding time, platelet aggregation, expression and function of αIIbβ3 on the surface of platelet.@*RESULTS@#The bleeding time of GT mice was significantly longer than that of WT mice (P<0.01). Induced by collagen, thrombin, and adenosine diphosphate (ADP), platelet aggregation in GT mice was significantly inhibited (P<0.01, P<0.01, P<0.05). Flow cytometry analysis showed that the expression of αIIbβ3 on the platelet surface of GT mice decreased significantly compared with WT mice (P<0.01), and binding amounts of activated platelets to fibrinogen were significantly reduced after thrombin stimulation (P<0.01). The spreading area of platelet on fibrinogen in GT mice was significantly smaller than that in WT mice (P<0.05).@*CONCLUSION@#A GT mouse model with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation has been established successfully by CRISPR/Cas9 technology. The aggregation function of platelet in this model is defective, which is consistent with GT performance.


Animals , Humans , Mice , CRISPR-Cas Systems , Codon, Nonsense , Disease Models, Animal , Fibrinogen/genetics , Integrin alpha2/genetics , Oligonucleotides , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Thrombasthenia/genetics , Thrombin/genetics
9.
J Biol Chem ; 297(5): 101318, 2021 11.
Article En | MEDLINE | ID: mdl-34678312

Studying the tight activity regulation of platelet-specific integrin αIIbß3 is foundational and paramount to our understanding of integrin structure and activation. αIIbß3 is essential for the aggregation and adhesion function of platelets in hemostasis and thrombosis. Structural and mutagenesis studies have previously revealed the critical role of αIIbß3 transmembrane (TM) association in maintaining the inactive state. Gain-of-function TM mutations were identified and shown to destabilize the TM association leading to integrin activation. Studies using isolated TM peptides have suggested an altered membrane embedding of the ß3 TM α-helix coupled with αIIbß3 activation. However, controversies remain as to whether and how the TM α-helices change their topologies in the context of full-length integrin in native cell membrane. In this study, we utilized proline scanning mutagenesis and cysteine scanning accessibility assays to analyze the structure and function correlation of the αIIbß3 TM domain. Our identification of loss-of-function proline mutations in the TM domain suggests the requirement of a continuous TM α-helical structure in transmitting activation signals bidirectionally across the cell membrane, characterized by the inside-out activation for ligand binding and the outside-in signaling for cell spreading. Similar results were found for αLß2 and α5ß1 TM domains, suggesting a generalizable mechanism. We also detected a topology change of ß3 TM α-helix within the cell membrane, but only under conditions of cell adhesion and the absence of αIIb association. Our data demonstrate the importance of studying the structure and function of the integrin TM domain in the native cell membrane.


Cell Membrane , Platelet Glycoprotein GPIIb-IIIa Complex , Signal Transduction , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , HEK293 Cells , Humans , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Conformation, alpha-Helical , Protein Domains
10.
Blood ; 138(15): 1359-1372, 2021 10 14.
Article En | MEDLINE | ID: mdl-34375384

The αIIbß3 integrin receptor coordinates platelet adhesion, activation, and mechanosensing in thrombosis and hemostasis. Using differential cysteine alkylation and mass spectrometry, we have identified a disulfide bond in the αIIb subunit linking cysteines 490 and 545 that is missing in ∼1 in 3 integrin molecules on the resting and activated human platelet surface. This alternate covalent form of αIIbß3 is predetermined as it is also produced by human megakaryoblasts and baby hamster kidney fibroblasts transfected with recombinant integrin. From coimmunoprecipitation experiments, the alternate form selectively partitions into focal adhesions on the activated platelet surface. Its function was evaluated in baby hamster kidney fibroblast cells expressing a mutant integrin with an ablated C490-C545 disulfide bond. The disulfide mutant integrin has functional outside-in signaling but extended residency time in focal adhesions due to a reduced rate of clathrin-mediated integrin internalization and recycling, which is associated with enhanced affinity of the αIIb subunit for clathrin adaptor protein 2. Molecular dynamics simulations indicate that the alternate covalent form of αIIb requires higher forces to transition from bent to open conformational states that is in accordance with reduced affinity for fibrinogen and activation by manganese ions. These findings indicate that the αIIbß3 integrin receptor is produced in various covalent forms that have different cell surface distribution and function. The C490, C545 cysteine pair is conserved across all 18 integrin α subunits, and the disulfide bond in the αV and α2 subunits in cultured cells is similarly missing, suggesting that the alternate integrin form and function are also conserved.


Focal Adhesions/metabolism , Integrin beta3/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Animals , Cell Line , Cricetinae , Disulfides/analysis , Focal Adhesions/genetics , Human Umbilical Vein Endothelial Cells , Humans , Integrin beta3/chemistry , Integrin beta3/genetics , Molecular Dynamics Simulation , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Membrane Glycoprotein IIb/chemistry , Platelet Membrane Glycoprotein IIb/genetics
11.
Sci Rep ; 11(1): 11965, 2021 06 07.
Article En | MEDLINE | ID: mdl-34099810

Colchicine inhibits coronary and cerebrovascular events in patients with coronary artery disease (CAD), and although known to have anti-inflammatory properties, its mechanisms of action are incompletely understood. In this study, we investigated the effects of colchicine on platelet activation with a particular focus on its effects on activation via the collagen glycoprotein (GP)VI receptor, P2Y12 receptor, and procoagulant platelet formation. Therapeutic concentrations of colchicine in vitro (equivalent to plasma levels) significantly decreased platelet aggregation in whole blood and in platelet rich plasma in response to collagen (multiplate aggregometry) and reduced reactive oxygen species (ROS) generation (H2DCF-DA, flow cytometry) in response to GPVI stimulation with collagen related peptide-XL (CRP-XL, GPVI specific agonist). Other platelet activation pathways including P-selectin expression, GPIIb/IIIa conformational change and procoagulant platelet formation (GSAO+/CD62P+) (flow cytometry) were inhibited with higher concentrations of colchicine known to inhibit microtubule depolymerization. Pathway specific mechanisms of action of colchicine on platelets, including modulation of the GPVI receptor pathway at low concentrations, may contribute to its protective role in CAD.


Colchicine/chemistry , Coronary Artery Disease/drug therapy , Platelet Membrane Glycoproteins/metabolism , Reactive Oxygen Species/chemistry , Blood Platelets/drug effects , Carrier Proteins/metabolism , Colchicine/metabolism , Colchicine/pharmacology , Gene Expression Regulation/drug effects , Humans , P-Selectin/metabolism , Peptides/metabolism , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Receptors, Collagen/genetics , Receptors, Collagen/metabolism , Signal Transduction
12.
Thromb Haemost ; 121(9): 1206-1219, 2021 09.
Article En | MEDLINE | ID: mdl-33940656

BACKGROUND: Several platelet-derived microRNAs are associated with platelet reactivity (PR) and clinical outcome in cardiovascular patients. We previously showed an association between miR-204-5p and PR in stable cardiovascular patients, but data on functional mechanisms are lacking. AIMS: To validate miR-204-5p as a regulator of PR in platelet-like structures (PLS) derived from human megakaryocytes and to address mechanistic issues. METHODS: Human hematopoietic stem cells were differentiated into megakaryocytes, enabling the transfection of miR-204-5p and the recovery of subsequent PLS. The morphology of transfected megakaryocytes and PLS was characterized using flow cytometry and microscopy. The functional impact of miR-204-5p was assessed using a flow assay, the quantification of the activated form of the GPIIbIIIa receptor, and a fibrinogen-binding assay. Quantitative polymerase chain reaction and western blot were used to evaluate the impact of miR-204-5p on a validated target, CDC42. The impact of CDC42 modulation was investigated using a silencing strategy. RESULTS: miR-204-5p transfection induced cytoskeletal changes in megakaryocytes associated with the retracted protrusion of proPLS, but it had no impact on the number of PLS released. Functional assays showed that the PLS produced by megakaryocytes transfected with miR-204-5p were more reactive than controls. This phenotype is mediated by the regulation of GPIIbIIIa expression, a key contributor in platelet-fibrinogen interaction. Similar results were obtained after CDC42 silencing, suggesting that miR-204-5p regulates PR, at least in part, via CDC42 downregulation. CONCLUSION: We functionally validated miR-204-5p as a regulator of the PR that occurs through CDC42 downregulation and regulation of fibrinogen receptor expression.


Blood Platelets/metabolism , Megakaryocytes/metabolism , MicroRNAs/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombopoiesis , cdc42 GTP-Binding Protein/metabolism , Blood Platelets/ultrastructure , Humans , Megakaryocytes/ultrastructure , MicroRNAs/genetics , Phenotype , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Signal Transduction , cdc42 GTP-Binding Protein/genetics
13.
J Biol Chem ; 296: 100675, 2021.
Article En | MEDLINE | ID: mdl-33865854

Interaction of talin with the cytoplasmic tails of integrin ß triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin KO mice, loss of talin interaction with platelet integrin αIIbß3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVß3 affects angiogenesis. In normal cells, talin is autoinhibited and localized in the cytoplasm. Here, we used an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (Arabidopsis cryptochrome 2 fused to the N terminus of talin; N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]) responsive to 450 nm (blue) light was inserted into Chinese hamster ovary cells and endothelial cells also expressing αIIbß3 or αVß3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of Arabidopsis cryptochrome 2-talin to the N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]-decorated plasma membrane. This resulted in ß3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Ras-related protein 1 (Rap1)-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated ß3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in ß3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.


Cell Membrane/metabolism , Cytoplasm/metabolism , Endothelial Cells/metabolism , Optogenetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Talin/metabolism , rap1 GTP-Binding Proteins/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Mice , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Protein Binding , Talin/genetics , rap1 GTP-Binding Proteins/genetics
15.
J Mol Biol ; 433(7): 166832, 2021 04 02.
Article En | MEDLINE | ID: mdl-33539882

The inhibition of physiological activation pathways of the platelet adhesion receptor integrin αIIbß3 may fail to prevent fatal thrombosis, suggesting that the receptor is at risk of activation by yet an unidentified pathway. Here, we report the discovery and characterization of a structural motif that safeguards the receptor by selectively destabilizing its inactive state. At the extracellular membrane border, an overpacked αIIb(W968)-ß3(I693) contact prevents αIIb(Gly972) from optimally assembling the αIIbß3 transmembrane complex, which maintains the inactive state. This destabilization of approximately 1.0 kcal/mol could be mitigated by hydrodynamic forces but not physiological agonists, thereby identifying hydrodynamic forces as pathological activation stimulus. As reproductive life spans are not generally limited by cardiovascular disease, it appears that the evolution of the safeguard was driven by fatal, hydrodynamic force-mediated integrin αIIbß3 activation in the healthy cardiovascular system. The triggering of the safeguard solely by pathological stimuli achieves an effective increase of the free energy barrier between inactive and active receptor states without incurring an increased risk of bleeding. Thus, integrin αIIbß3 has evolved an effective way to protect receptor functional states that indicates the availability of a mechanical activation pathway when hydrodynamic forces exceed physiological margins.


Integrin beta3/genetics , Platelet Adhesiveness/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Thrombosis/genetics , Blood Platelets/metabolism , Humans , Integrin alpha Chains/genetics , Protein Binding/genetics , Thrombosis/pathology
16.
Methods Mol Biol ; 2217: 237-249, 2021.
Article En | MEDLINE | ID: mdl-33215384

Platelets are small, anucleate cells that play oversized roles in hemostasis, immunity, and inflammation. An important mediator of platelet function is integrin αIIbß3, which is required for fibrinogen-dependent platelet aggregation during hemostasis. This platelet response is dependent on conformational changes in the integrin induced by "inside-out" biochemical signals that are triggered by platelet agonists. In turn, fibrinogen binding to αIIbß3 initiates "outside-in" biochemical and mechanical signals that regulate the platelet cytoskeleton and help to promote full platelet aggregation and secretory responses. Without a nucleus, there is a limited range of experimental manipulations that are possible with human platelets to study the molecular basis of integrin signaling in these primary cells. Consequently, many studies of αIIbß3 function use genetic approaches that rely on heterologous expression systems or platelets from gene-targeted mice, sometimes with uncertain applicability to human platelets. This chapter will detail a method for genetic manipulation of megakaryocytes and platelets derived from human induced pluripotent stem cells for molecular studies of αIIbß3 signaling and for modeling of human platelet functions potentially relevant to hemostasis, immunity, and inflammation.


Blood Platelets/metabolism , Cell Engineering/methods , Megakaryocytes/metabolism , Platelet Aggregation/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Membrane Glycoprotein IIb/genetics , Blood Platelets/cytology , Cell Differentiation , Cell Line , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Fibrinogen/genetics , Fibrinogen/metabolism , Gene Expression Regulation , Hemostasis/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/cytology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Ubiquitins/antagonists & inhibitors , Ubiquitins/genetics , Ubiquitins/metabolism
17.
Int J Mol Sci ; 21(19)2020 Sep 28.
Article En | MEDLINE | ID: mdl-32998468

The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbß3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbα-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin αIIbß3, a pathway promoting platelet deposition to the growing thrombus.


Adenosine Diphosphate/pharmacology , Blood Platelets/drug effects , Collagen Type I/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Thrombosis/microbiology , von Willebrand Factor/genetics , Animals , Arteries/metabolism , Arteries/pathology , Blood Platelets/immunology , Blood Platelets/pathology , Cell Adhesion/drug effects , Collagen Type I/immunology , Female , Gastrointestinal Microbiome/immunology , Gene Expression , Germ-Free Life , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Glycoprotein GPIIb-IIIa Complex/agonists , Platelet Glycoprotein GPIIb-IIIa Complex/immunology , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/immunology , Primary Cell Culture , Symbiosis/immunology , Thrombosis/genetics , Thrombosis/immunology , Thrombosis/pathology , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , von Willebrand Factor/immunology
18.
Blood Adv ; 4(13): 3128-3135, 2020 07 14.
Article En | MEDLINE | ID: mdl-32649767

Kindlin-3, a protein 4.1, ezrin, radixin, and moesin (FERM) domain-containing adaptor in hematopoietic cells, is essentially required for supporting the bidirectional integrin αIIbß3 signaling in platelets by binding to the integrin ß3 cytoplasmic tail. However, the structural details of kindlin-3's FERM domain remain unknown. In this study, we crystalized the kindlin-3's FERM domain protein and successfully solved its 3-dimensional structure. The structure shows that the 3 kindlin-3's FERM subdomains (F1, F2, and F3) compact together and form a cloverleaf-shaped conformation, which is stabilized by the binding interface between the F1 and F3 subdomains. Interestingly, the FERM domain of kindlin-3 exists as a monomer in both crystal and solution, which is different from its counterpart in kindlin-2 that is able to form a F2 subdomain-swapped dimer; nonetheless, dimerization is required for kindlin-3 to support integrin αIIbß3 activation, indicating that kindlin-3 may use alternative mechanisms for formation of a functional dimer in cells. To evaluate the functional importance of the cloverleaf-like FERM structure in kindlin-3, structure-based mutations were introduced into kindlin-3 to disrupt the F1/F3 interface. The results show that integrin αIIbß3 activation is significantly suppressed in platelets expressing the kindlin-3 mutant compared with those expressing wild-type kindlin-3. In addition, introduction of equivalent mutations into kindlin-1 and kindlin-2 also significantly compromises their ability to support integrin αIIbß3 activation in CHO cells. Together, our findings suggest that the cloverleaf-like FERM domain in kindlins is structurally important for supporting integrin αIIbß3 activation.


Blood Platelets , Platelet Glycoprotein GPIIb-IIIa Complex , Animals , Cricetinae , Cricetulus , FERM Domains , Integrin beta3 , Platelet Glycoprotein GPIIb-IIIa Complex/genetics
20.
J Thromb Haemost ; 18(2): 497-509, 2020 02.
Article En | MEDLINE | ID: mdl-31691484

BACKGROUND: To date, several mutations that induce constitutive activation of integrin αIIbß3 have been identified in congenital macrothrombocytopenia. Of these, αIIb(R995W) is the most prevalent mutation observed in Japanese patients with αIIbß3-related congenital macrothrombocytopenia. OBJECTIVE AND METHODS: The present study aimed to explore the effects of constitutive activation of the αIIb(R995W) mutation on platelet production, morphology, and function. We generated αIIb(R990W) knock-in (KI) mice corresponding to human αIIb(R995W). RESULTS: Platelet counts of heterozygous (hetero) and homozygous (homo) KI mice were decreased by ~10% and ~25% relative to those of wild-type (WT) mice, respectively, with increase in platelet size. Decrease in absolute reticulated platelet numbers in steady state, delayed recovery from thrombocytopenia induced by anti-platelet antibody and impaired response to exogenous thrombopoietin administration suggested impaired platelet production in KI mice. WT and KI mice showed no significant differences in the number of megakaryocytes and ploidy of megakaryocytes, whereas proplatelet formation was significantly impaired in homo mice. We observed a slight but significant reduction in platelet lifespan in homo mice. The homo mice showed dramatic reduction in αIIbß3 expression in platelets, which was accompanied by severe in vivo and in vitro platelet dysfunction. CONCLUSION: The αIIb(R990W) KI mice developed macrothrombocytopenia, which was primarily attributed to impaired proplatelet formation. In addition, homo KI mice showed marked downregulation in αIIbß3 expression in platelets with severe impaired platelet function, similar to Glanzmann thrombasthenia.


Integrin alpha2/genetics , Thrombasthenia , Thrombocytopenia , Animals , Blood Platelets , Humans , Mice , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Thrombasthenia/genetics , Thrombocytopenia/genetics
...